2018年公務(wù)員聯(lián)考行測復(fù)習(xí)你可能用到這些公式
2018年公務(wù)員聯(lián)考于2018年4月21日開始筆試,考試中那些會用到的公式,你都熟記了嗎?本文公考通(ssrtes.com)將為大家分享那些你需要牢記的公式。
一、數(shù)字特性
掌握一些最基本的數(shù)字特性規(guī)律,有利于我們迅速的解題。(下列規(guī)律僅限自然數(shù)內(nèi)討論)
(一)奇偶運(yùn)算基本法則
【基礎(chǔ)】奇數(shù)±奇數(shù)=偶數(shù);
偶數(shù)±偶數(shù)=偶數(shù);
偶數(shù)±奇數(shù)=奇數(shù);
奇數(shù)±偶數(shù)=奇數(shù)。
【推論】
1.任意兩個數(shù)的和如果是奇數(shù),那么差也是奇數(shù);如果和是偶數(shù),那么差也是偶數(shù)。
2.任意兩個數(shù)的和或差是奇數(shù),則兩數(shù)奇偶相反;和或差是偶數(shù),則兩數(shù)奇偶相同。
?。ǘ┱卸ɑ痉▌t
1.能被2、4、8、5、25、125整除的數(shù)的數(shù)字特性
能被2(或5)整除的數(shù),末一位數(shù)字能被2(或5)整除;
能被4(或 25)整除的數(shù),末兩位數(shù)字能被4(或 25)整除;
能被8(或125)整除的數(shù),末三位數(shù)字能被8(或125)整除;
一個數(shù)被2(或5)除得的余數(shù),就是其末一位數(shù)字被2(或5)除得的余數(shù);
一個數(shù)被4(或 25)除得的余數(shù),就是其末兩位數(shù)字被4(或 25)除得的余數(shù);
一個數(shù)被8(或125)除得的余數(shù),就是其末三位數(shù)字被8(或125)除得的余數(shù)。
2.能被3、9整除的數(shù)的數(shù)字特性
能被3(或9)整除的數(shù),各位數(shù)字和能被3(或9)整除。
一個數(shù)被3(或9)除得的余數(shù),就是其各位相加后被3(或9)除得的余數(shù)。
3.能被11整除的數(shù)的數(shù)字特性
能被11整除的數(shù),奇數(shù)位的和與偶數(shù)位的和之差,能被11整除。
?。ㄈ┍稊?shù)關(guān)系核心判定特征
如果a∶b=m∶n(m,n互質(zhì)),則a是m的倍數(shù);b是n的倍數(shù)。
如果x=mny(m,n互質(zhì)),則x是m的倍數(shù);y是n的倍數(shù)。
如果a∶b=m∶n(m,n互質(zhì)),則a±b應(yīng)該是m±n的倍數(shù)。
二、乘法與因式分解公式
正向乘法分配律:(a+b)c=ac+bc;
逆向乘法分配律:ac+bc=(a+b)c;(又叫“提取公因式法”)
平方差:a2-b2=(a-b)(a+b);
完全平方和/差:(a±b)2=a2±2ab+b2;
立方和:a3+b3=(a+b)(a2-ab+b2);
立方差:a3-b3=(a-b)(a2+ab+b2);
完全立方和/差:(a±b)3=a3±3a2b+3ab2±b3;
等比數(shù)列求和公式:S=a1(1-q^n)/(1-q) (q≠1);
等差數(shù)列求和公式:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。
三、三角不等式
丨a+b丨≤丨a丨+丨b丨;丨a-b丨≤丨a丨+丨b丨;丨a-b丨≥丨a丨-丨b丨;-丨a丨≤a≤丨a丨。
四、某些數(shù)列的前n項(xiàng)和
1+2+3+…+n=n(n+1)/2;
1+3+5+…+(2n-1)=n2;
2+4+6+…+(2n)=n(n+1);
12+32+52+…+(2n-1)2=n(4n2-1)/3
13+23+33+…+n3==(n+1)2*n2/4
13+33+53+…+(2n-1)3=n2(2n2-1)
1×2+2×3+…+n(n+1)=n*(n+1)*(n+2)/3
以上就是公考通總結(jié)的行測考試中可能用到的公式,希望對考生有幫助。