數(shù)量
特值法解決多者合作問(wèn)題-2025國(guó)家公務(wù)員考試行測(cè)解題技巧
http://ssrtes.com 2024-08-07 10:31 來(lái)源:永岸公考
行測(cè)試卷中的“數(shù)量關(guān)系”往往讓部分?jǐn)?shù)學(xué)基礎(chǔ)不好的同學(xué)不知如何是好。其原因在于,一方面,同學(xué)們想取得優(yōu)異名次,那么高分必不可少、每模塊正確率都需拉高;另一方面此題型考點(diǎn)多,許多人想學(xué)但無(wú)從下手。今天帶大家一起來(lái)學(xué)習(xí),數(shù)量關(guān)系中的多者合作問(wèn)題中常用的兩種技巧。
【公式】
工程問(wèn)題核心公式:工作總量(W)=工作效率(p)×工作時(shí)間(t)
一、什么是多者合作
多個(gè)主體通過(guò)一定的方式合作完成某項(xiàng)工作。特點(diǎn)是,有多個(gè)主體完成同一項(xiàng)工作。題目中,“總效率往往等于多個(gè)主體的效率之和、總工作量等于多個(gè)主體的工作量之和”。并且,根據(jù)題目所給數(shù)據(jù),我們往往可以利用特值法,通過(guò)找“工作總量”或“工作時(shí)間”的等量關(guān)系,來(lái)列式求解此類問(wèn)題。
二、解題技巧
(一)當(dāng)給出多個(gè)主體各自的完工時(shí)間時(shí),則可特值工作總量為完工時(shí)間的公倍數(shù)。
【例1】某項(xiàng)工程,甲工程隊(duì)單獨(dú)施工需要30天完成,乙工程隊(duì)單獨(dú)施工需要25天完成。甲隊(duì)單獨(dú)施工了4天后,改由兩隊(duì)一起施工,期間甲隊(duì)休息了若干天,最后整個(gè)工程共耗時(shí)19天完成,問(wèn)甲隊(duì)中途休息了幾天?
A.1
B.3
C.5
D.7
答案:D
【解析】特值工作總量為30和25的最小公倍數(shù)150,則甲、乙兩隊(duì)的工作效率分別為5、6。設(shè)甲、乙兩隊(duì)同時(shí)施工t1天,甲隊(duì)休息t2天,即乙對(duì)單獨(dú)工作了t2天,可得5×4+(5+6)×t1+6×t2=150,4+t1+t2=19,聯(lián)立兩個(gè)方程,消去t1,解得t2=7。
(二)當(dāng)(直接或間接)給出多個(gè)主體的效率關(guān)系時(shí),則可特值多個(gè)主體各自效率為效率最簡(jiǎn)比的數(shù)值。
【例2】某醫(yī)療器械公司為完成一批口罩訂單生產(chǎn)任務(wù),先期投產(chǎn)了A和B兩條生產(chǎn)線,A和B的工作效率之比是2∶3,計(jì)劃8天可完成訂單生產(chǎn)任務(wù)。兩天后公司又投產(chǎn)了生產(chǎn)線C,A和C的工作效率之比為2∶1。問(wèn)該批口罩訂單任務(wù)將提前幾天完成?
A.1
B.2
C.3
D.4
答案:A
【解析】題干直接給出A、B、C的工作效率之比為2∶3∶1,則特值A(chǔ)的工作效率為2,B的工作效率為3,C的工作效率為1,生產(chǎn)任務(wù)總量為(2+3)×8=40。根據(jù)“兩天后公司又投產(chǎn)了生產(chǎn)線C”,可知A和B合作生產(chǎn)兩天,剩余任務(wù)量由A、B、C共同完成。設(shè)A、B、C的合作時(shí)間為t天,可得(2+3)×2+(2+3+1)×t=40,解得t=5,則完成全部任務(wù)共用2+5=7天,則該批口罩訂單任務(wù)將提前8-7=1天完成。
免費(fèi)學(xué)習(xí)資源(關(guān)注可獲取最新開(kāi)課信息)